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Edge states in graphene in magnetic fields: A specialty of the edge mode embedded
in the n=0 Landau band
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While usual edge states in the quantum Hall effect (QHE) reside between adjacent Landau levels, QHE in
graphene has a peculiar edge mode at E=0 that resides right within the n=0 Landau level as protected by the
chiral symmetry. We have theoretically studied the edge states to show that the E=0 edge mode, despite being
embedded in the bulk Landau level, does give rise to a wave function whose charge is accumulated along
zigzag edges. This property, totally outside continuum models, implies that the graphene QHE harbors edges
distinct from ordinary QHE edges with their topological origin. In the charge accumulation the bulk states
redistribute their charge significantly, which may be called a topological compensation of charge density. The
real-space behavior obtained here should be observable in a scanning tunnel microscope imaging.

DOI: 10.1103/PhysRevB.78.205401

I. INTRODUCTION

Ever since the anomalous quantum Hall effect (QHE) was
experimentally observed,'? fascination with graphene is
mounting. The interests have been focused on the “massless
Dirac” dispersions around Brillouin-zone corners (K, K') in
graphene, where the Dirac cone is topologically protected
due to the chiral symmetry.> The peculiar dispersion is re-
sponsible for the appearance of the n=0 Landau level (n:
Landau index) precisely around energy E=0 in magnetic
fields. For the ordinary integer QHE an important general
question is how the bulk and edge QHE conductions are
related for finite samples. Many authors have addressed this
question,*> where one of the present authors has shown that
the bulk QHE conductivity, a topological quantity, coincides
with the edge QHE conductivity, itself another topological
quantity. The bulk-edge correspondence constitutes a typical
example of phenomena that, when a gapped quantum liquid
reflects a geometrical phase® characteristic of the quantum
ground state and thus possess a hidden nontrivial topological
structure,”"'% this becomes visible when the system is geo-
metrically perturbed such as the introduction of edges.!’"
For graphene, two of the present authors and Fukui have
shown that this “bulk-edge correspondence” persists in
graphene, with both an analytic treatment of the topological
numbers and numerical results for the honeycomb lattice.'3!4

Now, in the physics of graphene, it is important to distin-
guish between the properties that arise from the continuum
theory (i.e., the massless Dirac dispersion that comes from
the k-p perturbation in the effective-mass formalism') from
the properties that can only be captured by going back to the
honeycomb lattice. In Refs. 13 and 14, we have already rec-
ognized this in a change from the Dirac to fermionic behav-
iors at van Hove singularities of the honeycomb lattice, and
in the QHE edge modes that depend on whether the edge is
zigzag of armchair.

The purpose of the present paper is to reveal the features
in the real-space profile of the edge states in graphene in
magnetic fields B in the one-body problem. The graphene
edge states in fact turn out to behave unusually. A crucial
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point is that we find that the E=0 edge mode has a wave
function whose charge is accumulated along zigzag edges,
despite being embedded right within the n=0 bulk Landau
level in the energy spectrum. This situation is drastically dif-
ferent from the ordinary QHE where edge modes reside, in
energy, between adjacent Landau levels and their charge is
depleted toward an edge. We can indeed realize in Fig. 1
(Landau spectrum vs position) that E=0 mode in graphene is
special. The physics here points to a topological origin in a
honeycomb lattice, which is in fact totally outside continuum
models. In the absence of magnetic fields, a zigzag edge in
graphene has been known to have a flat dispersion at E=0,'
which is protected by the bipartite symmetry of the honey-
comb lattice. Here we are talking about the edge states in
strong magnetic fields, which have a flat dispersion at E=0.
The charge accumulation along zigzag edges only occurs for
the E=0 edge mode in the n=0 Landau level. To be more
precise, the bulk states redistribute their charge significantly
on top of the zero-mode contribution, which may be called a
topological compensation of charge density. While disorder
can affect the physics of the n=0 Landau level'” including a
possible splitting of the level, an interesting problem in its
own right, here we focus on the clean case. Experimentally
the present result on the real-space wave functions predicts
how an scanning tunneling microscope (STM) imaging
should look like for graphene edges.'® For comparison we
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FIG. 1. Schematic Landau-quantized spectra against real-space
position (x) for finite systems for ordinary (a) QHE systems and (b)
graphene QHE.
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FIG. 2. Honeycomb lattice with (a) armchair or (b) zigzag edges
(indicated by arrows) with e;,e, being respective unit translation
vectors.
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have also examined edges in a bilayer graphene in Sec.

III.

II. SINGLE LAYER

We first examine the single-layer graphene in strong mag-
netic fields. We consider the standard tight-binding model on
the honeycomb lattice with nearest-neighbor hopping, where
the magnetic field is introduced as a Peierls phase in the
Landau gauge. We specify the magnetic field as the flux in
each hexagon with area Sg=(3V3/2)a®> in units of the
magnetic-flux quantum, ¢p=BSs/(27)=1/q. Since we want
to look at edges, we should be more explicit about the
Hamiltonian. Since honeycomb is a non-Bravais, bipartite
lattice with two sublattice sites ® and © per unit cell, we can
define two fermion operators c. and c.. For an armchair edge
[Fig. 2(a)], the Hamiltonian reads

Ha =12 [cl()e.() +cl +e)e.()
J

+e2™ el (j+ e, +e,)c.(j)] + Hee..

Here j=j,e,+/,e, with e,,e, defined in Fig. 2(a) specifying
the position of a unit cell. For a zigzag edge [Fig. 2(b)] the
Hamiltonian reads

Hy=12 [cl()e.() + e 1ci (e - ) + cl(j + e)e ()]
j

+H.c.,

with e,,e, as defined in Fig. 2(b). Hereafter we take 7 as a
unit of energy and a as a unit of length.

We assume that the system has left and right edges with a
spacing L,, taken to be large enough (L;=5¢ here) to avoid
interference.?! The length along the direction (e,) parallel to
the edge is also assumed to be long enough (L,), for which
we apply the periodic boundary condition. We can then make
a  Fourier transform in  that  direction,  ¢,(j)
=1,"7% €22 ,(jy, ko), for j,=1,2,+++,L, and a=+,e. This
yields a k,-dependent series of one-dimensional Hamil-
tonian, H=2; Hp(k,). The resultant eigenvalue problem re-
duces to H,p(k,)| 4k, ,E)y=E|idk,,E)), with corresponding
eigenstates |((k,,E)).
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FIG. 3. (Color online) Energy spectra against k, (momentum
along the edge) for a single-layer graphene in a magnetic field of
¢=1/5 with zigzag edges. Shaded regions are the bulk energy spec-
tra while red (blue) lines are the modes localized on the zigzag
(bearded) edge.

Having STM images in mind, we define the local charge
density,

)
I[X(]])]Z ZLJ dEJ dk2|l//a(E,.]l’k2)|2 (1)
mJE,

Here x is the distance from the edge (as related to j, via e,
which is not normal to the edge) and E; <E<E, is the en-
ergy window to be included in the charge density (which is
normalized to unity when the window covers the whole spec-
trum).

We have stressed that the E=0 edge mode is embedded
within the n=0 Landau level, which is depicted in Fig. 3, a
blowup of the energy spectrum (for a relatively high ¢
=1/5 for clarity).!3 The shaded regions represent the n=0
Landau band while the red curves represent the edge modes
localized along the zigzag edge. We can see that, despite the
presence of a strong magnetic field, there exists an exactly
E=0 edge mode piercing the n=0 bulk Landau band. We can
realize its topological origin by noting that there are an odd
number (2¢g—1) of edge modes with zigzag edges so that the
bipartite symmetry (that forces an electron-hole symmetric
energy spectrum) precisely dictates that the central edge
mode has to be flat and at E=0."3

Figure 4 shows the energy spectrum in a magnetic field
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FIG. 4. Energy spectra against k, (momentum along the edge)
for a single-layer graphene in a magnetic field of ¢=1/21 for (a)

armchair or (b) zigzag edges.
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() (b)

FIG. 5. (Color online) Local charge density (o area of each
circle; red and blue indicate two sublattices) for a single-layer
graphene with (a) armchair or (b) zigzag edges in a magnetic field
¢=1/21 for the energy window —0.05 <E <0.05 around n=0 Lan-
dau level (see Fig. 4).

¢=1/21 adopted hereafter for the armchair and zigzag
edges. For this more moderate field the n=0 Landau level
around E=0, with a narrow energy width (~0.05), almost
looks like a line spectrum on this energy resolution. We cal-
culate the local charge density defined in Eq. (1) for the
armchair and zigzag edges with the energy window —0.05
< E<0.05 set to cover the n=0 Landau level (along with the
embedded E=0 edge mode).?? In the result in Fig. 5 the
charge density for an armchair edge decreases monotonically
toward the edge, where the depletion occurs on the magnetic
length scale (Iz=3%%a/\2m¢), as in ordinary QHE systems.
In sharp contrast, a zigzag edge has the charge density for the
e sublattice that is accumulated toward the edge while the
charge density for the o sublattice is depleted. This is the first
key result here.

The question then is how the accumulation of the charge
around the zigzag edge scales with the magnetic field. We
plot in Fig. 6 the charge density /(x) normalized by the bulk
value I, (which is ¢, when each Landau level of massless
Dirac particles is fully occupied®®) against the distance from
the edge x measured in units of the magnetic length /; for
various values of the magnetic field with the energy window
fixed at —0.05 < E <<0.05. In this scaled plot the profile of the
zigzag edge states for various values of the magnetic field
fall upon common lines, where the accumulation of the
charge on ¢ sublattice as well as the depletion on ° sublattice
are seen to occur, respectively, on the magnetic length scale
toward the edge.
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FIG. 6. (Color online) Scaled plot of the charge density I(x)
against x//p, the distance from the edge normalized by the magnetic
length, for the n=0 Landau level (marked with A in Fig. 4) with
various values of magnetic field ¢ for (a) armchair or (b) zigzag
edges.
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FIG. 7. (Color online) Scaled plot of the charge density /(x)
against x/lg for the n=1 Landau level (marked with B in Fig. 4)
with magnetic field ¢=1/41 for (a) armchair or (b) zigzag edges.

We have seen in Fig. 3 that the flat dispersion for B# 0 on
a zigzag edge only exists over one third of the k, Brillouin
zone (that satisfies |1—(—1)%*2| <1, see Appendix). We in-
deed observe that the accumulated ¢ charge over the depleted
o charge, estimated by integrating the density around the
edge, is

[ reo-rwae=3a-0)

within the numerical accuracy. Effects of disorder or
electron-electron interaction can cause splitting and broaden-
ing of the n=0 Landau level'”>*~2° but we expect a small
splitting will not change the charge density /(x) significantly
as far as the energy window covers the split Landau levels.
In order to confirm that the charge accumulation around
zigzag edges is specific to the n=0 Landau level which em-
beds the edge mode, we can look at the charge density for
n=1 Landau level. We can see in Fig. 7 that I(x) monotoni-
cally decreases toward the edge for both armchair and zigzag
edges although we can notice that the charge density exhibits
plateaus for each of ¢ and o sublattices in a zigzag edge.

III. DOUBLE LAYER

Next we examine the bilayer graphene [Fig. 8(a)], which

(a) (b)

FIG. 8. (Color online) (a) A bilayer graphene with Bernal stack-
ing with the top layer having a zigzag edge. The transfer energies
considered in the Slonczewski-Weiss-McClure model are displayed.
(b) Energy spectrum for a bilayer graphene having a zigzag edge in
the top layer with interlayer couplings #;=1,=0.17 in a magnetic
field of ¢=1/21.
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FIG. 9. (Color online) Local charge density (o area of each
circle) for a bilayer graphene with 7;=1,=0.1¢ (a) armchair or (b)
zigzag edges (indicated by arrows) in a magnetic field ¢=1/21 for
the energy window —0.05<E <<0.05. Red/gray and blue/dark gray
(green/light gray and yellow/very light yellow) circles represent top
(bottom) layer.

is interesting in its own right as studied by many papers but
the system is practically interesting as well since, experimen-
tally, the STM imaging may be easier for the edge of the top
layer residing on a wider bottom layer. We consider the bi-
layer graphene with the AB (Bernal) stacking in the standard
Slonczewski-Weiss-McClure model,*3! where there are two
types of interlayer transfers: ¢, and #,. For simplicity we have
taken t;=1,=0.17, which are roughly the estimated
values.’>* As in the single layer, the periodic boundary con-
dition is applied in e, direction while a wider width (L,
=7q) is taken for the bottom layer (with L,=5¢ for the top
layer). Despite the interlayer coupling, the Landau-quantized
energy spectrum [Fig. 8(b)] is similar to those for the n=0
Landau level on this energy scale.> Figure 9 displays the
charge density for armchair and zigzag edges with an energy
window that covers the bilayer n=0 Landau level. We can
see that the edge states in the top layer are similar to those in
the single layer, namely, the charge density is accumulated
toward the zigzag edge on one sublattice.

IV. SUMMARY

We have shown that the charge density in graphene in
strong magnetic fields should be totally unlike ordinary QHE
systems, where the charge is accumulated toward zigzag
edges, in which a topological compensation of the charge
occurs in the bulk states as well. We can predict that a bright
edge should be observed when an STM study is done for a
zigzag edge of the top layer in a bilayer graphene.
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APPENDIX: ZERO-ENERGY EDGE-MODE
CONTRIBUTION TO THE CHARGE ACCUMULATION

Here we consider the charge density along the edge con-
tributed from the zero-energy edge mode. If we follow Ref.
13 for the honeycomb lattice with zigzag edges, we have a
relation between the wave functions at ¢ and o sites as

Ewc(jl?kZ) = to-(jl’k2) lp‘(jth) + t_-o(jl’k2) 1,0-(].1 + l’kZ)’
Ed(j1 k) = 1y = L)Wy = 1.ky) + (1, k) .1 k),

where 1..(j;, ky) =t(1+e*27278¢i1) and 1.,(j, . k,) =t, X denotes
the complex conjugate of x. As for the ¢ sublattice of E=0
mode, we have a recursion relation,

(i + Lky) == (1 + ® 2720 g (1 k).
For ¢p=1/g (with ¢: an odd integer) we have an identity,

q-1
H |1 + eikz—i2ﬂ'¢m|2= |1 + eiqk2|2=4 C0S2q_kz’
m=1 2
so that we have a recursion relation |¢(j;+q.k,)|?
k .
=4 COSZ%) X |.(j, . ky)|>. For the charge density to decay

! . k Lo
for large j;, we need the relation 4 cosz% <1, which is sat-

isfied over one third of the k, Brillouin zone. Therefore the
charge density of the jth ¢ sublattice is obtained as

. l—lj—l1 |1 +eik2—i2'n'm¢|2
m=
I.=

=— dk
J I ]
2 El:l H

m=1
_Lf dk
2w 2

|1 +eik2—i211'm</)|2

l—lj—l1 |1 +eik2—i27rmq$|2
m=

H::]l I+ eikz—i27rm¢|2’

q
=1

k
1-4 coszu

where the integral is performed over k, that satisfies the con-

dition 4 cosz%k2 <1. We can then readily show the relation
37,1;=1/3. A numerical study® indicates that the charge
density contributed by the edge mode /;/1, (scaled by the
bulk intensity I,= ¢) exhibits a series of plateaus with a step
arising every time j increases by ¢ and the height of the nth
plateau p, is given in terms of the intensity /, of the ¢ sub-
lattice for zero magnetic field. The intensity 7, for zero mag-
netic field can be obtained by our substituting g=1 into the
above integral, which can be simplified into

1 A=

")y N1-44

For large n’s the plateau p, decays like p,~n=2/(m/3). This
implies that, although the zero-energy mode contribution has
an algebraic decay with no characteristic decay length
present, the bulk contribution compensates this in such a way
that the charge accumulation occurs over a definite length
scale (which is the magnetic length). Since the Landau spec-
trum has a topological nature, we may call the curious phe-
nomena a “topological compensation of charge densities.”3®
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